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Energy Exascale Earth System Model (E3SM)

US Department of Energy’s state-of-the-art Earth
system model, forked from the Community Earth
System Model (CESM) in 2014.

Several components: atmosphere, land, ocean,
land-ice, sea-ice, etc.

Broad variety of time/space scales.

Mostly written in Fortran.

Developed by hundreds of people, contains snippets
of codes written across several decades.
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E3SM Atmosphere Model (EAM)

Broadly speaking, divided in two parts: dynamics and physics

Dynamics: solves Navier-Stokes equations in rotating spherical framework. It also solves for the
transport of tracers in the atmosphere. E3SM uses High Order Methods Modeling Environment
(HOMME, M.Taylor) package, which

decouples horizontal and vertical differential operators;
uses Spectral Element method in horizontal direction;
uses Finite Difference methods in vertical direction;

Physics: approximates processes not resolved by dynamics. Examples include:

microphysics: water (vapor, liquid, ice) phase changes and precipitation;
macrophysics: subgrid cloud and turbulent processes;
radiation: radiative effects on atm temperature;
aerosols: cloud and radiative effects of transported particles.
deep convection: thermally driven turbulent mixing of air

All MPI communication (except for I/O) is in dynamics. Physics is usually implemented as a
"column model", making it embarrassingly parallel in the horiz direction
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Global cloud resolving models. Why?

Global Cloud-Resolving Models (GCRM) avoid the
need for convection parameterizations, which are the
main source of climate change uncertainty
(Sherwood et al., Nature 2014)

Resolved convection will substantially reduce major
systematic errors in precipitation because of its more
realistic and explicit treatment of convective storms.

Improve our ability to assess regional impacts of
climate change on the water cycle that directly affect
multiple sectors of the US and global economies,
especially agriculture and energy production.
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Simple Cloud-Resolving E3SM Atmosphere Model

The Simple Cloud-Resolving E3SM Atmosphere Model (SCREAM) started in 2018, tasked with
delivering a cloud-resolving E3SM atmosphere model that runs efficiently on DOE’s exascale machines.

The team:

scattered across 6 US DOE National Laboratories (plus a number of university collaborators)

backgrounds spanning atm sciences, CFD, computer science, hardware, compilers, ...

SCREAM configuration

resolution: 3.25km horizontal, 128 vertical levels

dynamics: HOMME non-hydrostatic dycore (Taylor, JAMES, 2020)

microphysics: Predicted Particle Properties (Morrison, Milbrandt, J.Atm.Sci. 2015)

macrophysics: Simple High Order Closure (Bogenschutz, Kruger, JAMES 2015)

radiation: RTE+RRTMGP package (Pincus et al, JAMES 2019)

aerosol: prescribed

deep convection

Note: at 3.25km horizontal resolution, with 128 vertical levels, we have ∼7.2B degrees-of-freedom per
variable on the dynamics grid.

5



Programming in the era of GPUs

The Top500 list shows the largest machines are increasingly GPU-based
GPU architectures are not all the same
Vendors may change strategy and/or abandon certain designs (remember KNL?)
CPUs are NOT dead, and still play an essential role
Who knows what computing devices will look like in 10y?
Adapting to code for GPUs takes time and training
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Performance portability strategies

While GPUs are king in the exascale era, CPU performance is still crucial in E3SM.

Performance Portability: capability of a code base to run “efficiently” on a variety of computer
architectures. Three main approaches:

compiler directives: hint/force compiler on how to optimize (e.g., OpenMP, OpenACC).

general purpose lib: delegate architecture-specific choices to a library (e.g., Kokkos, Raja, etc.)

domain-specific lang/lib: add intermediate compilation step, to generate optimal source for a
given architecture (e.g., psyclone, gridtools, etc.).

Note: maintaining multiple versions of E3SM (one for each HPC architecture) is not viable approach.
Performance portability is a must in the path to exascale.
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The Kokkos programming model

C++ library for on-node parallelism

Provides constructs for expressing parallelism: execution space, execution policy,
parallel operation.

Provides constructs for multi-dimensional arrays: data type, memory space, layout,
memory access/handling.

Supports several back ends: OpenMP, Pthreads, Cuda, HIP, SYCL, etc.

Very Reliable: large pool of (world-class) developers, heavily tested, countless
downstream apps, closely follows new HPC architectures. www.kokkos.org
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Challenges of Fortran->C++ rewriting for portability

Rewriting a whole atmosphere model in C++ to run efficiently on GPUs and CPUs was not easy.

Some of the challenges:

C++ is a syntax-heavy language. Sometimes hard to read for C++ experts too.

GPU and CPU work in drastically different ways.

Domain scientists are very familiar with Fortran (maybe Python), but not C++ ("SFINAE you
said? What’s that?")

Computer scientists are not familiar with atm sciences ("a parametrization you said? What’s
that?")

The existing code is so vast and spans so many years that

nobody has a good understanding of all of it (person 1: "ask person 2", person2:
"ask person 3", person 3: retired long ago)
some snippets are still there years after last time they were used
some parts coded when Fortran had line length limits, and/or by people used to
that, resulting in cryptic var names (pblhp, jt2slv, nvcfin_f,...)
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Challenges: the language barrier

SCREAM team paired folks new to C++ (or relatively inexperienced) with seasoned developers.

Ramp up complexity of tasks over time (don’t start from code involving template specialization).

Provide design patterns, to be used over and over (even if sometimes you may leave some perf on
the table)

While not scalable, at the beginning it’s ok to split work between devs and domain scientists
based on background

WARNING: do not degenerate in the pattern "scientists will develop/tune the
parametrization/scheme in f90/python, and developers will take care of porting it"; nobody
learns, expertise is not shared, everyone gets frustrated.
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Challenges: the domain barrier

Developers may not understand the science. Or the numerical schemes. Looking at the solution,
they may only see numbers.
Atm scientists don’t appreciate (enough) the value of unit tests. Debugging with only a full
E3SM bfb test is a nightmare.
Developers do not know enough about the science to come up with property tests (e.g., field A
should be monotonic)
Patterns and abstractions can help to separate concerns and compartmentalize.
Some cross-education is needed: developers need to familiarize with "typical" solutions and
eye-ball metrics statistics, while atm scientists need to understand the rules for a robust code
(e.g., testing)
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Challenges: GPUs vs CPUs

Kokkos (or other perf-portability libraries) can help to make code "uniform" (single-code,
multiple-backends)
Must train devs on fundamental differences, like memory spaces management, or race conditions,
synchronizations, etc.
The trick to get performance on GPU may be drastically different from CPU. In order to achieve
a single-code, one needs to think carefully and plan on design choices (data structures,
algorithms, loops order, etc).
Participate to hackathons: help from vendors and cluster admins can drastically help, especially
with familiarizing with toolchains (debuggers and profilers above all)
Automating GPU testing (via CI) can help with developers that don’t put too much attention to
GPU during development (some devs may not get access to GPU machine right away)
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Challenges: learn from existing code

Writing an atm model from scratch is an opportunity to change what is fragile, unclear, or
obsolete.

Existing codes often have a reason for the way they are. Most of the time it is a good one.
Sometimes it is habit.

E3SM build system is a soup of XML, python, perl, bash, with a sprinkle of CMake. SCREAM
was entirely CMake-based from the start, but had to interact with main E3SM build system.

Existing EAM contained a lot of "spaghetti-code". Hard to follow the code unless you already
know it.

For some parts of the existing code people only knew "how to use it", but did not know "how it
worked" or "why it’s like that". Hard to distinguish between what needs to be "copied" and
what can be redesigned if you don’t understand the reasons behind it. Sometimes, the person
that knows the answer (if any) is not right next door.
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Software Engineering: hierarchical parallelism

Parallelizing nested loops allow to expose maximum parallelism (fundamental for GPUs)

In Kokkos, this is implemented via "team" execution policies, grouping threads in "teams", so
that they can share local scratch memory, and cooperatively work to compute and reuse
intermediate quantities.

In SCREAM, we only use 2 layers of parallelism, over columns and levels respectively. The
exception is dynamics, where 3 layers are used.

By slicing-away outer dimensions, SCREAM can use the same array layout
(Kokkos::LayoutRight, or "row major")

Team policies allow for cached memory access on CPU, and coalesced memory access on GPU.

Repetitive patterns help domain scientists (and also developers)

14



Software Engineering: hierarchical parallelism

for ( int i e =0; i e<num elements ; ++i e ) {
for ( int idx=0; idx<NP∗NP; ++idx ) {

int i = idx / NP; int j = idx % NP;
double v0 = v( ie , 0 , i , j ) ; double v1 = v( ie , 1 , i , j ) ;
buf (0 , i , j ) = ( J (0 , 0 , i , j )∗ v0 + J (1 ,0 , i , j )∗ v1 )∗metdet ( i , j ) ;
buf (1 , i , j ) = ( J (0 , 1 , i , j )∗ v0 + J (1 ,1 , i , j )∗ v1 )∗metdet ( i , j ) ;

}

for ( int idx=0; idx<NP∗NP; ++idx ) {
int i = idx / NP; int j = idx % NP;
double dudx = 0 . 0 , dvdy = 0 . 0 ;
for ( int k = 0 ; k < NP; ++k) {

dudx += D( j , k ) ∗ buf (0 , i , k ) ;
dvdy += D( i , k ) ∗ buf (1 , k , j ) ;

}
div ( ie , i , j ) = (dudx+dvdy ) / (metdet ( i , j )∗ r ea r th ) ;

}
. . .

}
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Software Engineering: simd-like types for vectorization

CPU performance is still crucial for lower-resolution, debugging, as well as quickly experimenting
new features.

Vectorization is by far the most effective way to obtain performance in terms of FLOPS/Watt.

Fortran is built for N-dim arrays manipulation, but C++ isn’t. C++ compilers do not always
vectorize efficiently.

Several projects reached the same solution: use simd-like data structures to facilitate the
compiler vectorization. In SCREAM, we called this data structure "Pack".

Some parametrizations are full of conditional statements, so "masked" simd operations are
necessary.

On GPU, no vectorization. If code hard-codes Pack as scalar type, must use a pack size of 1
(with no overhead).

Overload math operators (and functions) to allow for seamless code
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Software Engineering: simd-like types for vectorization

c on s t e x p r i n t pack_s ize = 8 ;
c on s t e x p r doub l e p i = 3 . 1 415 ;
u s i n g pack_t = Pack<double , pack_size >;

// Get a v iew from somewhere
Kokkos : : View<doub le∗> v = . . . ;
v (0)= p i ; v (1)=2∗ p i ; . . . , v ( n ) = n∗ p i ; // I n i t w i th range v a l u e s

// R e i n t e r p r e t the v iew ( must en su r e v . s i z e ( ) i s a mu l t i p l e o f pack_s ize )
auto npacks = ( v . s i z e ( ) + pack_s ize − 1) / pack_s ize ;
Kokkos : : View<pack_t∗> vp ( r e i n t e r p r e t_ c a s t <pack_t∗>(v . data ( ) ) , npacks ) ;

// Each en t r y i s now a pack , and we can do math on i t
auto& p = vp ( 0 ) ;

// Option 1 : assumes pack type
auto mask = p>=(5∗ p i ) ;
p . s e t (mask , s i n ( p ) ) ; // W i l l y i e l d p = {pi , 2 p i , 3 p i , 4 p i , 0 , 0 , 0 , 0}

// Option 2 : works w i th Pack and doub l e ( v i a t emp la t e s p e c i a l i z a t i o n s )
auto where_smal l = where (p>=(5∗ p i ) , p ) ; // Gets a hand l e o f p , a l ong wi th mask
where_smal l = s i n ( p ) ; // Only updates where mask i s t r u e 17



Software Engineering: separation of concerns

Force interfaces to be explicit on what the require/compute, and track it.
Avoid global structures: data is provided at specific times/places. Cannot circumvent access
points.
When possible, use abstract interfaces.
When possible, avoid assumptions on specific types or operations order.
Prefer encapsulating 3 small classes over 1 big class (enhances testability)
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Software Engineering: separation of concerns

Example: AtmosphereProcess.

Provides the glue between the atm driver infrastructure and the parametrization implementation
library.

From the driver point of view, it’s a box that takes input fields and computes output fields.

Fields used must be declared as input or output (or both), so that driver can provide a handle
with proper cv qualifier.

Many steps of setup/run phases are common, so they can be implemented in base class, reducing
implementation burden for the parametrization developers.

Can allow nesting and grouping: a group of 2 atm procs A and B can be "viewed" as a single
process. E.g., this allows to subcycle them as A,B,A,B, handling everything from the base class
(again, lowering implementation burden on developers).

For basic parametrizations, the concrete implementation of the corresponding atm process can
take as little as 200 lines of code. Namely,

at init: declare input/output fields (name, layout, units, ...)
at run: grab views from input/output fields, call implementation details, ensure
output fields are synced to device
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Software Engineering: separation of concerns

20



Software Engineering: separation of concerns

20



Software Engineering: separation of concerns

20



Conclusions

GPUs are here to stay, so codes that need to use supercomputer need to adapt

Expertise needed in both Computer and Domain sciences is such that very few can master both

Splitting work into "science/algorithms development" vs "language-conversion/portability
development" is not maintainable in the long run. Compromise is needed: devs need to know
some science, and scientists need to know some coding

Code encapsulation can help separate concerns, increase readability in science-relevant parts, ease
of debugging, code maintainability, and overall productivity.

Develop data structures and code patterns to take care of performance-critical sections. Examples
include hierarchical parallelism patterns, vectorization, arrays manipulations (scans, reductions).

Rewriting a model from scratch is an opportunity: spend time understanding in depth the reasons
behind code/algorithm choices; keep what has a strong motivation behind, but don’t be afraid to
change approach if an advantageous alternative is available.
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