
PERFORMANCE PORTABILITY ON NOVEL 

ENERGY EFFICIENT ARCHITECTURES: 

FEASIBLE OR FANTASY?

Nick Brown, EPCC

n.brown@epcc.ed.ac.uk

Talking about work done by lots of people including Gabriel Rodriguez-Canal, 

Jake Davies, David Kacs, Nicolai Stawinoga, Tobias Grosser, Sasha Lopoukhine, 

Anton Lydike, Emilien Bauer, George Bisbas



• My first involvement with novel, energy efficient, 

architectures was over a decade ago

• And I learnt a very valuable lesson!

• Two main challenges

• Required a specific killer app/use-case

• Need to be easy to program

Back to 2014…..



Times change

But what about if we want to use these for scientific computing?

• AI/ML (theoretically) solves these challenges

• A very strong killer app, not just for customers but also investors!

• To provide Tensorflow / PyTorch only a small number of fundamental operations needed to 

be supported



The challenge of connecting one world with another….

Software

HardwareGeneral-

purpose

Specialised

How to compile specialised software across a range of 
hardware?
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Devito

● < 50,000 lines of code

● Compiler implemented in Python 

● Uses three IRs to compile

● Applies many optimisations, e.g. for 
loops and parallelism

● Support for GPUs & distributed 
memory, no support for hardware 
accelerators

●  > 2,500,000 lines of code

●  Compiler implemented in Python & C++

●  Uses two IRs with > 500 different types 
of expressions

●  Applies many classical loop 
optimizations

●  Great Performance & Support for 
custom hardware: TPU

● Approx. 50,000 lines of code

● Programmer writes code in Fortran

● Compiler implemented in Python with 
lots of optimisations

● Uses one IRs to compile

● Support for GPUs and distributed 
memory, no support for hardware 
accelerators



A problem of siloing
• Entirely separate compilation 

stacks

• However, lots of similar activities being 

undertaken and duplication, even 

though specifics are different

• Everybody loses here!

• Risk for users, will my DSL compiler still 

be around in 5 years and support the 

latest supercomputers?

• DSL developers must invest lots of 

effort to build and maintain their stacks

• Especially when then targeting new 

architectures

Python

C

Devito

Fortran

Fortran



TensorFlow had a different idea….
• Sensible to use 

LLVM due to all the 

backends for a 

variety of 

architectures

• But LLVM-IR is low 

level

• Front ends again 

have duplication 

between them



TensorFlow had a different idea…. • MLIR is a subproject of 
LLVM

• Comprises dialects and 
transformations
• And a framework for 

developing these

• Lower between dialects, 
and these can be mixed

• Entry point can be much 
higher level



Example MLIR lowering

MLIR provides:

• Standard dialects

• Standard transformations within 
and between dialects

• Framework for bespoke dialects 
& transformations



MLIR — Multi-Level Intermediate Representation

Progressive Lowering from Application Domain to Hardware

%x = tf.Conv2d(%input, %filter) {strides: [1,1,2,1], padding: "SAME", dilations: [2,1,1,1]} 
      : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32>

affine.for %i = 0 to %n {
  …
  %sum  = addf %a, %b : f32
  …
}

gpu.launch(%gx,%gy,%c1,%lx,%c1,%c1) {
  ^bb0(%bx: index, %by: index, %bz: index,
       %tx: index, %ty: index, %tz: index,
       %num_bx: index, %num_by: index, %num_bz: index,
       %num_tx: index, %num_ty: index, %num_tz: index)
  …
  %sum  = addf %a, %b : f32
  …
}
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MLIR is really nice!



MLIR is really nice!
But it’s very complicatedDialects and 

abstractions

Blocks and 

regions

SSA and 

operations

Core concepts



xDSL: Raising productivity with MLIR

● Focus on approachability 

● Reuse of existing concepts implemented in a simpler way

● Expands on MLIR concepts

● Making compiler frameworks interoperable

● Over 600,000 downloads on PyPI

xDSL is a Python implementation of MLIR concepts

https://xdsl.dev

https://github.com/xdslproject/xdsl 

https://xdsl.dev/
https://github.com/xdslproject/xdsl


Benefits: Programmer productivity & development time

• Same underlying concepts as MLIR 

with operations, regions, blocks, 

attributes etc

• But expressed in Python

xDSL



xDSL: a Sidekick to MLIR

• A Python native compilation framework

• Fast prototyping of new MLIR concepts 

and ideas

• Such as new dialects and transformations

• Such as the new MLIR MPI dialect

• Integration of Python-based DSLs into 

MLIR

Making the MLIR ecosystem accessible and extensible from Python



A common DSL ecosystem

• After integration, majority of heavy 

lifting done in the xDSL common 

ecosystem, with PSyclone and 

Devito identifying stencils and 

generating IR in the stencil dialect

• Cuts down PSyclone codebase by 

around 95%

• Lots of foundational work on new dialects and transformations

• For instance, the MPI dialect, which has now been merged into MLIR



GPU on Cirrus (V100)Single-node on ARCHER2 Strong scaling on ARCHER2

Devito

https://arxiv.org/pdf/2404.02218.pdf 

https://arxiv.org/pdf/2404.02218.pdf


Driving via Flang

1.

2.

Fortran 

source 

code

Lexing & 

parsing
Optimise FIR

LLVM 

IR

Object 

file
HLFIR &

FIR



Performance benefits on CPU and GPU….

PW advection benchmark with 2.1 billion grid points On V100 GPU, 22.11 of Nvidia SDK Gauss Seidel benchmark with global problem 

size 17 billion grid cells 

Multi-threaded GPU Distributed memory

S
te

n
c
il

 f
lo

w
G

e
n

e
ra

l 
fl

o
w

https://arxiv.org/pdf/2310.01882 

https://arxiv.org/pdf/2409.18824 

https://arxiv.org/pdf/2310.01882
https://arxiv.org/pdf/2409.18824


Targeting FPGAs for stencils using MLIR



Stencil High Multi-Level Synthesis (Stencil-HMLS)

• Using the existing flow and dialects, we 
lower the stencil dialect (and others) to 
the HLS dialect

• Ultimately means that stencil codes 
written in any language can target FPGAs 



Performance

• For this benchmark, our approach is between 90 

and 100 times faster than DaCE

• Lots more details at https://arxiv.org/pdf/2310.01914 
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https://arxiv.org/pdf/2310.01914


AMD’s AI Engines (AIEs)

• In late 2023 AMD released their Ryzen AI CPU, which 

contains their Neural Processor Unit which is a marketing 

term for an array of AIEs

• Very interesting, as a much more attractive proposition if 

these are already inside a CPU

• Current models of Ryzen AI contain an array of 20 AIEs, each AIE-ML contains 64KB 
and has five memory tiles each of 512KB
• However Int32 and FP32 support have been removed compared to the AIEs in Versal, with BF16 

provided instead
• Int32 and FP32 are emulated so can be run on the NPU

• Direct programming via kernels in C++ using API and Riallto Python framework for the 
dataflow graph 



Extending to seamlessly offload on the AMD’s AIEs

• This is all hidden from the programmer, they 

simply recompile their code and the intrinsics 

will be run on the Ryzen-AI’s AIE array if 

appropriate

https://arxiv.org/pdf/2502.10254 

https://arxiv.org/pdf/2502.10254


Tenstorrent Tensix architecture
• Range of PCIe accelerator cards

• On their original Grayskull accelerator 
we demonstrated comparable 
performance to a 24-core Platinum CPU 
for a stencil benchmark, but at five times 
less energy

• Architecture designed for AI, but the 
decoupling of memory from compute (and 
wide matrix & vector units) have significant 
potential for HPC
• But people won’t port their codes to their 

bespoke C++ based API!



Driving Tenstorrent from Fortran via MLIR

• They have a nice software stack approach

• TT-NN are all the primatives required for AI/ML 

workloads, built upon the generalised TT-Metalium 

framework which itself calls into low level kernels

• Can hook code into the stack at any level

• Crucially, they have support for MLIR which can either call 

TT-NN kernels or directly drive the TT-Metalium layer

• All entirely open with Tenstorrent committing to working 

in an open first fashion



OpenMP + Fortran on Tenstorrent

subroutine saxpy(a, x, y, n)

  ...

  do i=1, n

    y(i) = a * x(i) + y(i)

  end do

end subroutine

Just normal Fortran, this will run on the CPU

But imagine we had a Wormhole card plugged into 

the machine……



OpenMP + Fortran on Tenstorrent

subroutine saxpy(a, x, y, n)

  ...

  !$omp target

  do i=1, n

    y(i) = a * x(i) + y(i)

  end do

  !$omp end target

end subroutine

Will offload this loop to a target device (in this case 

the Tenstorrent Wormhole).

Without any further information, target will run the 

loop on a single data movement baby RISC-V core. 

With data movement and kernel launch all 

happening seamlessly.



OpenMP + Fortran on Tenstorrent

subroutine saxpy(a, x, y, n)

  ...

  !$omp target simd simdlen(32)

  do i=1, n

    y(i) = a * x(i) + y(i)

  end do

  !$omp end target simd

end subroutine

The simd directive tells the compiler that the loop 

iterations are independent and can be vectorised. 

Here we offload this to the Tensix unit via the 

compute core. This is very different than the 

previous code, as iteration data is tiled by data in 

core, fed to compute core, and results read back by 

data out core and written to DDR 

simdlen is optional and will 

set the tile size (a sensible 

default is used if omitted)



OpenMP + Fortran on Tenstorrent

subroutine saxpy(a, x, y, n)

  ...

  !$omp target parallel do num_threads(10) simd 

  do i=1, n

    y(i) = a * x(i) + y(i)

  end do

  !$omp end target parallel do simd

end subroutine

Until this point were running on a single Tensix 

core, the parallel do directive parallelises loop 

iterations across Tensix cores. So now here we are 

running over all Tensix cores of the Wormhole, with 

the SIMD directive driving the Tensix unix of each.

Multiple levels of parallelism, across Tensix cores in 

the device and SIMD within each core.

num_threads is optional, sets the 

number of tensix units to parallelise 

over (if omitted runs on all)



Cerebras CS-3 flow

• Similar idea on the Cerebras Wafer 
Scale Engine (WSE)

• No changes needed to front ends

• Quite a lot of work in the middle layer, 
ultimately generating CSL code



Programming is the problem, MLIR enables the solution



Summary 
• Largely driven by AI workloads, it’s a very 

exciting time in the hardware world

• Given the ever increasing demand for performance 
and sustainability, we need new options

• But this is all for nothing if we can not program 
such machines!

• We must bring the hardware to the 
programmers, rather than expecting them to 
change their code & algorithms

• MLIR/xDSL provides new possibilities 
for compiler optimisations
• Arguably, is the method to help us 

address some of the grand challenges of 
parallel programming

• Lots of discussion about green software 
engineering, arguably this all should be 
handled by the compiler as 
programmers won’t change their code

• https://github.com/xdslproject

• https://xdsl.dev/ 

https://github.com/xdslproject
https://xdsl.dev/
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