
PERFORMANCE PORTABILITY ON NOVEL

ENERGY EFFICIENT ARCHITECTURES:

FEASIBLE OR FANTASY?

Nick Brown, EPCC

n.brown@epcc.ed.ac.uk

Talking about work done by lots of people including Gabriel Rodriguez-Canal,

Jake Davies, David Kacs, Nicolai Stawinoga, Tobias Grosser, Sasha Lopoukhine,

Anton Lydike, Emilien Bauer, George Bisbas

• My first involvement with novel, energy efficient,

architectures was over a decade ago

• And I learnt a very valuable lesson!

• Two main challenges

• Required a specific killer app/use-case

• Need to be easy to program

Back to 2014…..

Times change

But what about if we want to use these for scientific computing?

• AI/ML (theoretically) solves these challenges

• A very strong killer app, not just for customers but also investors!

• To provide Tensorflow / PyTorch only a small number of fundamental operations needed to

be supported

The challenge of connecting one world with another….

Software

HardwareGeneral-

purpose

Specialised

How to compile specialised software across a range of
hardware?

4

Devito

● < 50,000 lines of code

● Compiler implemented in Python

● Uses three IRs to compile

● Applies many optimisations, e.g. for
loops and parallelism

● Support for GPUs & distributed
memory, no support for hardware
accelerators

● > 2,500,000 lines of code

● Compiler implemented in Python & C++

● Uses two IRs with > 500 different types
of expressions

● Applies many classical loop
optimizations

● Great Performance & Support for
custom hardware: TPU

● Approx. 50,000 lines of code

● Programmer writes code in Fortran

● Compiler implemented in Python with
lots of optimisations

● Uses one IRs to compile

● Support for GPUs and distributed
memory, no support for hardware
accelerators

A problem of siloing
• Entirely separate compilation

stacks

• However, lots of similar activities being

undertaken and duplication, even

though specifics are different

• Everybody loses here!

• Risk for users, will my DSL compiler still

be around in 5 years and support the

latest supercomputers?

• DSL developers must invest lots of

effort to build and maintain their stacks

• Especially when then targeting new

architectures

Python

C

Devito

Fortran

Fortran

TensorFlow had a different idea….
• Sensible to use

LLVM due to all the

backends for a

variety of

architectures

• But LLVM-IR is low

level

• Front ends again

have duplication

between them

TensorFlow had a different idea…. • MLIR is a subproject of
LLVM

• Comprises dialects and
transformations
• And a framework for

developing these

• Lower between dialects,
and these can be mixed

• Entry point can be much
higher level

Example MLIR lowering

MLIR provides:

• Standard dialects

• Standard transformations within
and between dialects

• Framework for bespoke dialects
& transformations

MLIR — Multi-Level Intermediate Representation

Progressive Lowering from Application Domain to Hardware

%x = tf.Conv2d(%input, %filter) {strides: [1,1,2,1], padding: "SAME", dilations: [2,1,1,1]}
 : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32>

affine.for %i = 0 to %n {
 …
 %sum = addf %a, %b : f32
 …
}

gpu.launch(%gx,%gy,%c1,%lx,%c1,%c1) {
 ^bb0(%bx: index, %by: index, %bz: index,
 %tx: index, %ty: index, %tz: index,
 %num_bx: index, %num_by: index, %num_bz: index,
 %num_tx: index, %num_ty: index, %num_tz: index)
 …
 %sum = addf %a, %b : f32
 …
}

1

0

MLIR is really nice!

MLIR is really nice!
But it’s very complicatedDialects and

abstractions

Blocks and

regions

SSA and

operations

Core concepts

xDSL: Raising productivity with MLIR

● Focus on approachability

● Reuse of existing concepts implemented in a simpler way

● Expands on MLIR concepts

● Making compiler frameworks interoperable

● Over 600,000 downloads on PyPI

xDSL is a Python implementation of MLIR concepts

https://xdsl.dev

https://github.com/xdslproject/xdsl

https://xdsl.dev/
https://github.com/xdslproject/xdsl

Benefits: Programmer productivity & development time

• Same underlying concepts as MLIR

with operations, regions, blocks,

attributes etc

• But expressed in Python

xDSL

xDSL: a Sidekick to MLIR

• A Python native compilation framework

• Fast prototyping of new MLIR concepts

and ideas

• Such as new dialects and transformations

• Such as the new MLIR MPI dialect

• Integration of Python-based DSLs into

MLIR

Making the MLIR ecosystem accessible and extensible from Python

A common DSL ecosystem

• After integration, majority of heavy

lifting done in the xDSL common

ecosystem, with PSyclone and

Devito identifying stencils and

generating IR in the stencil dialect

• Cuts down PSyclone codebase by

around 95%

• Lots of foundational work on new dialects and transformations

• For instance, the MPI dialect, which has now been merged into MLIR

GPU on Cirrus (V100)Single-node on ARCHER2 Strong scaling on ARCHER2

Devito

https://arxiv.org/pdf/2404.02218.pdf

https://arxiv.org/pdf/2404.02218.pdf

Driving via Flang

1.

2.

Fortran

source

code

Lexing &

parsing
Optimise FIR

LLVM

IR

Object

file
HLFIR &

FIR

Performance benefits on CPU and GPU….

PW advection benchmark with 2.1 billion grid points On V100 GPU, 22.11 of Nvidia SDK Gauss Seidel benchmark with global problem

size 17 billion grid cells

Multi-threaded GPU Distributed memory

S
te

n
c
il

 f
lo

w
G

e
n

e
ra

l
fl

o
w

https://arxiv.org/pdf/2310.01882

https://arxiv.org/pdf/2409.18824

https://arxiv.org/pdf/2310.01882
https://arxiv.org/pdf/2409.18824

Targeting FPGAs for stencils using MLIR

Stencil High Multi-Level Synthesis (Stencil-HMLS)

• Using the existing flow and dialects, we
lower the stencil dialect (and others) to
the HLS dialect

• Ultimately means that stencil codes
written in any language can target FPGAs

Performance

• For this benchmark, our approach is between 90

and 100 times faster than DaCE

• Lots more details at https://arxiv.org/pdf/2310.01914

(H
ig

h
e
r

is
 b

e
tt

e
r)

(L
o

w
e
r

is
 b

e
tt

e
r)

https://arxiv.org/pdf/2310.01914

AMD’s AI Engines (AIEs)

• In late 2023 AMD released their Ryzen AI CPU, which

contains their Neural Processor Unit which is a marketing

term for an array of AIEs

• Very interesting, as a much more attractive proposition if

these are already inside a CPU

• Current models of Ryzen AI contain an array of 20 AIEs, each AIE-ML contains 64KB
and has five memory tiles each of 512KB
• However Int32 and FP32 support have been removed compared to the AIEs in Versal, with BF16

provided instead
• Int32 and FP32 are emulated so can be run on the NPU

• Direct programming via kernels in C++ using API and Riallto Python framework for the
dataflow graph

Extending to seamlessly offload on the AMD’s AIEs

• This is all hidden from the programmer, they

simply recompile their code and the intrinsics

will be run on the Ryzen-AI’s AIE array if

appropriate

https://arxiv.org/pdf/2502.10254

https://arxiv.org/pdf/2502.10254

Tenstorrent Tensix architecture
• Range of PCIe accelerator cards

• On their original Grayskull accelerator
we demonstrated comparable
performance to a 24-core Platinum CPU
for a stencil benchmark, but at five times
less energy

• Architecture designed for AI, but the
decoupling of memory from compute (and
wide matrix & vector units) have significant
potential for HPC
• But people won’t port their codes to their

bespoke C++ based API!

Driving Tenstorrent from Fortran via MLIR

• They have a nice software stack approach

• TT-NN are all the primatives required for AI/ML

workloads, built upon the generalised TT-Metalium

framework which itself calls into low level kernels

• Can hook code into the stack at any level

• Crucially, they have support for MLIR which can either call

TT-NN kernels or directly drive the TT-Metalium layer

• All entirely open with Tenstorrent committing to working

in an open first fashion

OpenMP + Fortran on Tenstorrent

subroutine saxpy(a, x, y, n)

 ...

 do i=1, n

 y(i) = a * x(i) + y(i)

 end do

end subroutine

Just normal Fortran, this will run on the CPU

But imagine we had a Wormhole card plugged into

the machine……

OpenMP + Fortran on Tenstorrent

subroutine saxpy(a, x, y, n)

 ...

 !$omp target

 do i=1, n

 y(i) = a * x(i) + y(i)

 end do

 !$omp end target

end subroutine

Will offload this loop to a target device (in this case

the Tenstorrent Wormhole).

Without any further information, target will run the

loop on a single data movement baby RISC-V core.

With data movement and kernel launch all

happening seamlessly.

OpenMP + Fortran on Tenstorrent

subroutine saxpy(a, x, y, n)

 ...

 !$omp target simd simdlen(32)

 do i=1, n

 y(i) = a * x(i) + y(i)

 end do

 !$omp end target simd

end subroutine

The simd directive tells the compiler that the loop

iterations are independent and can be vectorised.

Here we offload this to the Tensix unit via the

compute core. This is very different than the

previous code, as iteration data is tiled by data in

core, fed to compute core, and results read back by

data out core and written to DDR

simdlen is optional and will

set the tile size (a sensible

default is used if omitted)

OpenMP + Fortran on Tenstorrent

subroutine saxpy(a, x, y, n)

 ...

 !$omp target parallel do num_threads(10) simd

 do i=1, n

 y(i) = a * x(i) + y(i)

 end do

 !$omp end target parallel do simd

end subroutine

Until this point were running on a single Tensix

core, the parallel do directive parallelises loop

iterations across Tensix cores. So now here we are

running over all Tensix cores of the Wormhole, with

the SIMD directive driving the Tensix unix of each.

Multiple levels of parallelism, across Tensix cores in

the device and SIMD within each core.

num_threads is optional, sets the

number of tensix units to parallelise

over (if omitted runs on all)

Cerebras CS-3 flow

• Similar idea on the Cerebras Wafer
Scale Engine (WSE)

• No changes needed to front ends

• Quite a lot of work in the middle layer,
ultimately generating CSL code

Programming is the problem, MLIR enables the solution

Summary
• Largely driven by AI workloads, it’s a very

exciting time in the hardware world

• Given the ever increasing demand for performance
and sustainability, we need new options

• But this is all for nothing if we can not program
such machines!

• We must bring the hardware to the
programmers, rather than expecting them to
change their code & algorithms

• MLIR/xDSL provides new possibilities
for compiler optimisations
• Arguably, is the method to help us

address some of the grand challenges of
parallel programming

• Lots of discussion about green software
engineering, arguably this all should be
handled by the compiler as
programmers won’t change their code

• https://github.com/xdslproject

• https://xdsl.dev/

https://github.com/xdslproject
https://xdsl.dev/

	Slide 1: Performance portability on novel energy efficient architectures: Feasible or fantasy?
	Slide 2: Back to 2014…..
	Slide 3: Times change
	Slide 4: The challenge of connecting one world with another….
	Slide 5
	Slide 6: A problem of siloing
	Slide 7: TensorFlow had a different idea….
	Slide 8: TensorFlow had a different idea….
	Slide 9: Example MLIR lowering
	Slide 10: MLIR — Multi-Level Intermediate Representation
	Slide 11: MLIR is really nice!
	Slide 12: MLIR is really nice! But it’s very complicated
	Slide 13: xDSL: Raising productivity with MLIR
	Slide 14: Benefits: Programmer productivity & development time
	Slide 15: xDSL: a Sidekick to MLIR
	Slide 16: A common DSL ecosystem
	Slide 17
	Slide 18: Driving via Flang
	Slide 19: Performance benefits on CPU and GPU….
	Slide 20: Targeting FPGAs for stencils using MLIR
	Slide 21: Stencil High Multi-Level Synthesis (Stencil-HMLS)
	Slide 22: Performance
	Slide 23: AMD’s AI Engines (AIEs)
	Slide 24: Extending to seamlessly offload on the AMD’s AIEs
	Slide 25: Tenstorrent Tensix architecture
	Slide 26: Driving Tenstorrent from Fortran via MLIR
	Slide 27: OpenMP + Fortran on Tenstorrent
	Slide 28: OpenMP + Fortran on Tenstorrent
	Slide 29: OpenMP + Fortran on Tenstorrent
	Slide 30: OpenMP + Fortran on Tenstorrent
	Slide 31: Cerebras CS-3 flow
	Slide 32: Programming is the problem, MLIR enables the solution
	Slide 33: Summary

