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Back to 2014.....

- My first involvement with novel, energy efficient,
architectures was over a decade ago
- And | learnt a very valuable lesson!

- Two main challenges
- Required a specific killer app/use-case
- Need to be easy to program
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- Al/ML (theoretically) solves these challenges
- A very strong killer app, not just for customers but also investors!
- To provide Tensorflow / PyTorch only a small number of fundamental operations needed to

be supported e p cC

But what about if we want to use these for scientific computing?



The challenge of connecting one world with another....

Software

1F ®vm ;7) & Firedrake clon e% w
g

TensorFlow

How to compile specialised software across a range of

hardware?
General- Hardware Specialised
purpose
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e < 50,000 lines of code
e Compiler implemented in Python
e Uses three IRs to compile

e Applies many optimisations, e.g. for
loops and parallelism

e Support for GPUs & distributed
memory, no support for hardware
accelerators

Science and
Technology
Facilities Council

|
-

e Approx. 50,000 lines of code

e Programmer writes code in Fortran

e Compiler implemented in Python with
lots of optimisations

e Uses one IRs to compile
e Support for GPUs and distributed

memory, no support for hardware
accelerators

TensorFlow

> 2,500,000 lines of code
Compiler implemented in Python & C++

Uses two IRs with > 500 different types
of expressions

Applies many classical loop
optimizations

Great Performance & Support for
custom hardware: TPU



A prOblem Of SllOlng - Entirely separate compilation

Python \ Fortran \ stacks
- However, lots of similar activities being

| undertaken and duplication, even
though specifics are different

@ Devito

- Everybody loses here!

- Risk for users, will my DSL compiler still
be around in 5 years and support the
latest supercomputers?

- DSL developers must invest lots of
effort to build and maintain their stacks

- Especially when then targeting new
architectures

Fortran




TensorFlow had a different idea....

LLVM

Front -

ends

LLVM

Back -

ends

Classic .
Clang Flang llgo Rust Zig
LLVM IR -
Nvidia AMD Xilinx
x86 AArch64 RISC-V GPU GPU FPGA

- Sensible to use

LLVM due to all the
backends for a
variety of
architectures

- But LLVM-IR is low

level

- Front ends again

have duplication
between them




TensorFlow had a different idea....

Front
ends

LLVM
Back -
ends

Tensor
Flow

Flang

Polygeist

Mojo

S

Pylir
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Nvidia AMD Xilinx
X86 AArch64 RISC-V e SPU oea

- MLIR is a subproject of

LLVM

- Comprises dialects and

transformations

- And a framework for
developing these

- Lower between dialects,

and these can be mixed

- Entry point can be much

higher level
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Example MLIR lowering

Il GPU : Il GPU :
! | LLVM
Arith | by Mmr——# R ———rE
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- Standard transformations within : viemrer | : oo 1
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- Framework for bespoke dialects
& transformations
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MLIR — Multi-Level Intermediate Representation

Progressive Lowering from Application Domain to Hardware

é%x = tf.Conv2d(%input, %filter) {strides: [1,1,2,1], padding: "SAME", dilations: [2,1,1,1]} 1F
. : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32> :

éaffine.for %i =0 to %n {

%sum = addf %a, %b : f32

gpu.launch(%gx,%gy,%c1,%lIx,%c1,%c1) {

. Abb0(%bx: index, %by: index, %bz: index, :
L %tx: index, %ty: index, %tz: index, —

%num_bx: index, %snum_by: index, %num_bz: index,

%num_tx: index, %num_ty: index, %num_tz: index) ﬁ ﬂ
9%sum = addf %a, %b : f32 Hardware Targets

e ‘epcc|



@ MLIR Is really nice!
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/Q® MLIR Is really nice!
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XDSL: Raising productivity with MLIR

XDSL is a Python implementation of MLIR concepts

e Focus on approachability
e Reuse of existing concepts implemented in a simpler way

e Expands on MLIR concepts

« Making compiler frameworks interoperable

« Over 600,000 downloads on PyPI

R

[

[
https://xdsl.dev C )(C
https://github.com/xdslproject/xdsl|



https://xdsl.dev/
https://github.com/xdslproject/xdsl

Benefits: Programmer productivity & development time

class ApplyRewriter(RewritePattern):
@op_type_rewrite_pattern
def match_and_rewrite(
self, call noede: tiny py.CallExpr, rewriter: PatternRewriter):

- Same underlying concepts as MLIR
idx = block.ops.index(call_node)

Cel1_node dekach) with operations, regions, blocks,
attributes etc

- But expressed in Python

some_other_op = ....
rewriter.insert_op_at_pos(some_other_op, block, idx)

def apply my analysis(ctx: psy ir.MLContext,; module: ModuleOp) -»* ModuleQp:
applyRewriter=ApplyRewriter()
walker = PatternRewriteWalker({GreedyRewritePatternApplier([applyRewriter]), apply_recursively=False)
walker.rewrite_module(module)

return module

Recompilation time (log) | Desktop (Ryzen 16 Core) MLIR - compilation B MLIR - testing I xDSL - testing
S My, Q ks S A S S M O O, % O O, S5 b 0 O b S G O, D S Sa by O 4 N O 4 o B O
v, O, TS L o, Yo % %y e Y0, S0, O 0, ‘o, Yo o) S 7, % . Q, G U
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xDSL: a Sidekick to MLIR

Making the MLIR ecosystem accessible and extensible from Python

‘ H - A Python native compilation framework
i O H —$ © - Fast prototyping of new MLIR concepts
Jo — @ | and ideas
—® | —@- | |
- . : _‘ - Such as new dialects and transformations
[% |-| ._I - Such as the new MLIR MPI dialect
ﬁ&iﬁ%ﬁiﬁ 'l' "" ll'
l u - Integration of Python-based DSLs into
& m| - MLIR

Hardware Targets
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A common DSL ecosystem

Our xDSL Existing MLIR
technology ec-:::si/stem

|

- After integration, majority of heavy

f \
Devito & xosL MLIR lifting done in the xDSL common

e ecosystem, with PSyclone and
- Stencil SCF & . . . . .
Symbele PREs o T dalect  menef Devito identifying stencils and
repreventation [N | C generating IR in the stencil dialect
DMP OpenMP GPU .
— | | Cuts down PSyclone codebase by
o~ ' around 95%
clone — MPI - LLV
Fortran code RATSOg
tréﬂfrf::t:;ns ".? Flang ! "’«,? Clang
] - FIR dialect LLVM-IR Di‘:::;“
Psy-IR ~ —

- Lots of foundational work on new dialects and transformations
- For instance, the MPI dialect, which has now been merged into MLIR




Single-node on ARCHER2

T/put
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https://arxiv.org/pdf/2404.02218.pdf

Strong scaling on ARCHER2

Throughput

(GPts/s) - Linear xDSL-PSyclone
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https://arxiv.org/pdf/2404.02218.pdf

Driving via Flang

Fortran .
Lexing & HLFIR & LLVM Object
source > 9 » Optimise > » FIR > -
- P FIR ! IR file
code parsing
I I 7 I
_,| Lowerto |pmpé&| Lowerto [mpi& | Lowerto |funcé&
DMP memre MPI memre func memref
Sef& Lowerto Vector &
memref Vector memref Miscellaneous
Iuwe:_ing& —— LLVM-IR
—> Lovcvpe[’for Lowerto OpenMP Hansterms
OpenMP & memref
Stencil &
memref
Lower for Scf & Lowerto GPU&
] GPU memref GPU memref
Fortran .
source Flang FIR ,| Discover | Frs | Extract
code stencils | stencil | stencils
I FIR Flang » LLVM-IR
il F Pr— — @ — |
Fortran |1 Our I
ng, lexi HLFIR | ! - imisati - :
source | |Parsing, lexing and - transformation | Core MLIR Optimisation Core MLIR Lowering | LLVM |Gengeration_ LLVM
code | 1Some optimisation & FIR ;passes | dialects passes dialects passes dialect I IR
I I -.._..-ﬂ"""___ --._.-4"'"-—
——7 | Flang | L MLIR !
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Performance benefits on CPU and GPU....

Multi-threaded GP
3000 1000000 [ OpenACC with Nvidia
; O Cray O Flang only [ Stencil
100000 - 1 [7] OStencil {initial data approach)
2500 ]
o _ - -
- = _ > — O Stencil {optimised data management)
< 2000 _ E 10000 — - -
- — o _
U £ TE-' 1000
: = 1500 g.
a =
O 5 3 10
]
] E 1000 E
0 £
500 H H 10
0 e M= H | .—.ﬂ m [ H 1

Gauss-268M  Gauss-536M Gauss-1.0B PW-8M
Benchmark

PW-33M PW-134M

1 2 4 g 16 32 64 128
Number of threads

PW advection benchmark with 2.1 billion grid points On V100 GPU, 22.11 of Nvidia SDK

https://arxiv.orqg/pdf/2310.01882

Distributed memory

300000
O Hand parallelised
250000

200000 O Stencil automatic parallelisation
150000

100000

~loe e [ [ [ 0 ]

1 2 4 8 16 32 64
Number of nodes

Throughput (MCells/s)

Gauss Seidel benchmark with global problem
size 17 billion grid cells

Running over a single core of ARCHER2, a Cray-EX (AMD Rome)

https://arxiv.orqg/pdf/2409.18824

Benchmark Runtime (s) o " Our approach Flang v20
o I ac K 150 4233 161 28 49 2% 3 41 ;;3 serial threaded serial
= ne 1060 1029 2o 743 transpose | 214.48  40.75 27238
o test_fpu 72.41 11080 3256  76.99 matmul | 43.12 11.85 45.71
“C-’ tfft 52.33 48.90 61.65  115.86 dotproduct | 0.81 - 2.70
o jacobi 249.08 277.67  109.89 23262 sum 1.63 - 1.65
Q) pw-advection 86.47 205.33 47.28 192.05 Running on ARCHER?2, a Cray-EX (AMD Rome)
tra-adv 124.72 141.95 79.38  116.71

epcc|



https://arxiv.org/pdf/2310.01882
https://arxiv.org/pdf/2409.18824

L
Targeting FPGAs for stencils using MLIR

HBM2 or
DDR-DRAM
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Fortranor
Python
source code

L

PSyclone,

} Devito, Flang

1 Stencil

(o)

- Flang
Fortral Parsing &
code optimisation

. Discover
FIR dialect ~—— o o0
Devito | ®xpst
Python API -
- PDEs | - Stencil B B SCE&
Symbolic PDEs : dialect memref
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representation |
DMP HLS
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o
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Psy-IR —
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Stencil HMLS
pass for
FPGAs

@ MLIR

1

OpenMP GPU

-

LLVM

LLVM-IR

F!%‘ Clang

HLS
dialect

Lowering HLS
dialect to
LLVM-IR

LLVM-IR

HLS

Stencil HMLS
runtime

J—-

annotated for =

f++

AMD Xilinx

LLVM-IR ~

v+t

| -xclbin \

- Using the existing flow and dialects, we
lower the stencil dialect (and others) to
the HLS dialect

- Ultimately means that stencil codes
written in any language can target FPGAs



Performance
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» For this benchmark, our approach is between 90
and 100 times faster than DaCE
* Lots more details at https://arxiv.org/pdf/2310.01914



https://arxiv.org/pdf/2310.01914

AMD's Al Engines (AlEs)

- In late 2023 AMD released their Ryzen Al CPU, which
contains their Neural Processor Unit which is a marketing
term for an array of AlEs

- Very interesting, as a much more attractive proposition if
these are already inside a CPU

AMDQ\
e

- Current models of Ryzen Al contain an array of 20 AIEs, each AIE-ML contains 64KB

and has five memory tiles each of 512KB

- However Int32 and FP32 support have been removed compared to the AlEs in Versal, with BF16

provided instead
- Int32 and FP32 are emulated so can be run on the NPU

- Direct programming via kernels in C++ using APl and Riallto Python framework for the

dataflow graph




Extending to seamlessly offload on the AMD’s AlEs

: .
o : xrt Lowering | func Lowering | LLVM |Generation | LLVM :
mmmmm e | {(0“ dialect [Pass | dialect | Passes | dialect 1 IR !
F I i i : | I
source |1angsome | HLFIR | | pastng | Linalg |/ 1€PYSO% . :
code ':Gpr"mmaﬁo” & FIR :Lowe”"g dialect
:_F_!‘E_’.qg_ ___________ : 2 ’“-»,3@
IR . T T T T T T T T T TR TR ST EEEE TR I
: : - AMD’s 1
lnteger o dﬂt&(lOOOOO), result, 1 I Library of AIE aie Specialisation aie AlE :
do i=1, 100000 | e | diatect | diatect [ g
data(i)=i E_AIE code tooling |
end do
result-sum(data) - This is all hidden from the programmer, they
T CPT NPU first | NPU subsequent simply recompile their code and the intrinsics
type | runtime (us) | runtime (us) | _runtime (us) will be run on the Ryzen-Al's AIE array if
intl6 5473 2572 1353 .
int32 14032 2635* 1503* appropriate
bfloat16 815194 2626 1357
float32 17566 3901* 1471*

Table 4: Runtime (in microseconds) of matmul Fortran in-
trinsic with a problem size of 256x256x512 elements

https://arxiv.orq/pdf/2502.10254

epcc



https://arxiv.org/pdf/2502.10254
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Tenstorrent Tensix architecture

- Range of PCle accelerator cards

- On their original Grayskull accelerator
we demonstrated comparable
performance to a 24-core Platinum CPU
for a stencil benchmark, but at five times
less energy

[ 1.3MB local SRAM }
. - Architecture designed for Al, but the
e ~ decoupling of memory from compute (and
iSCveore | RS0y oore wide matrix & vector units) have significant
i r potential for HPC
route J@=- | [ Router g - But people won'’t port their codes to their
bespoke C++ based API!
‘epcc|
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Driving Tenstorrent from Fortran via MLIR

- They have a nice software stack approach

- TT-NN are all the primatives required for Al/ML
workloads, built upon the generalised TT-Metalium
framework which itself calls into low level kernels

- Can hook code into the stack at any level
- Crucially, they have support for MLIR which can either call
TT-NN kernels or directly drive the TT-Metalium layer

- All entirely open with Tenstorrent committing to working

in an open first fashion

xDSL (low-level-kernels)

Printer

1 ng, lexin, 1
SSSSSS ! and some HLFIR | Existing d_Stlan;:Ia(r_d Transform Ten);[t)cil;ent
T — > T, r ialects (inc >
Openmp | 10Ptmisation "l &FIR [ 1 Ltowering | 6 Ck o [7orTT olecte T LLnCTTTETEEEE
I

|
1| TTKernel
1| dialect
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OpenMP + Fortran on Tenstorrent

subroutine saxpy(a, x, y, n) Just normal Fortran, this will run on the CPU
e Le—
doi=1,n / But imagine we had a Wormhole card plugged into
y(i) = a * x(i) + y(i) the machine......
end do
end subroutine




OpenMP + Fortran on Tenstorrent

subroutine saxpy(a, X, Y, n)

ISomp target <«
doi=1,n
y(i) =a " x(i) + y(i)
end do
I3omp end target
end subroutine

Will offload this loop to a target device (in this case
the Tenstorrent Wormhole).

Without any further information, target will run the
loop on a single data movement baby RISC-V core.
With data movement and kernel launch all
happening seamlessly.




OpenMP + Fortran on Tenstorrent

subroutine saxpy(a, X, Y, n)

ISomp target simd simdlen(32)
doi=1,n
y(i) =a * x(i) + y(i)
end do
I$3omp end target simd
end subroutine

N

simdlen is optional and will
set the tile size (a sensible
default is used if omitted)

| The simd directive tells the compiler that the loop

iterations are independent and can be vectorised.

Here we offload this to the Tensix unit via the
compute core. This is very different than the
previous code, as iteration data is tiled by data in
core, fed to compute core, and results read back by
data out core and written to DDR




OpenMP + Fortran on Tenstorrent

Until this point were running on a single Tensix
core, the parallel do directive parallelises loop
iterations across Tensix cores. So now here we are
running over all Tensix cores of the Wormhole, with
the SIMD directive driving the Tensix unix of each.

subroutine saxpy(a, X, vy, n) -

ISomp target parallelrd'o num_threads(10) simd
doi=1,n
y(i) =a " x(i) + y(i)
end do
ISomp end target parallel do simd
end subroutine

Multiple levels of parallelism, across Tensix cores in
the device and SIMD within each core.

num_threads is optional, sets the
number of tensix units to parallelise
over (if omitted runs on all)




Cerebras CS-3 flow

Python API

Symbolic PDEs

PSyclone
Fortran code

Fortran code

Devito

PDEs
'

Stencil
representation

—_— T

=

clone =

Parsing &
API-specific
transformations

|

Psy IR  ——

'{E’ Flang

Parsing &
optimisation

HLFIR + FIR
dialects

@ »psL

stencil,
arith dialects

DMP, stencil
arith dialects

I

DMP, tensor,
linalg, stencil
dialects

tensor, linalg,
csl-stencil,
dialects

@ MLIR

memref, csl-ir,
csl-stencil l
l csl-ir
memref, csl-ir
print CSL code
from MLIR

Runtime II

libra

((erebras

Cerebras
device binary

CSL
code

- Similar idea on the Cerebras Wafer
Scale Engine (WSE)

- No changes needed to front ends

- Quite a lot of work in the middle layer,
ultimately generating CSL code

epcc
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Programming is the problem, MLIR enables the solution

Devito

Python API
PDEs
'

Stencil
representation

Symbolic PDEs

—

clone =

Parsing &
API-specific
transformations

l

Psy-IR

&QA Flang

Parsing &
optimisation

!

PSyclone
Fortran code

Fortran code

HLFIR + FIR

dialects

-

—

stencil
and other
dialects

linalg
and other
dialects

openmp and
other
dialects

stencil
and other
dialects

linalg
and other
dialects

openmp and
other
dialects

Cerebras flow

((cerebras

I
Tenstorrent 1
1
1

Dialects ———  "Giliects

<) tenstorrent

I
. AMD AIE I
I
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Summary

- Largely driven by Al workloads, it's a very
exciting time in the hardware world

- Given the ever increasing demand for performance
and sustainability, we need new options

- But this is all for nothing if we can not program
such machines!

- We must bring the hardware to the
programmers, rather than expecting them to
change their code & algorithms

@ MLIR

- MLIR/xDSL provides new possibilities
for compiler optimisations
- Arguably, is the method to help us

address some of the grand challenges of
parallel programming

- Lots of discussion about green software
engineering, arguably this all should be
handled by the compiler as
programmers won't change their code

- https://github.com/xdslproject
- https://xdsl.dev/



https://github.com/xdslproject
https://xdsl.dev/
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