
Justs ZarinsJusts Zarins

j.zarins@epcc.ed.ac.ukj.zarins@epcc.ed.ac.uk

1 / 29

Exploring DataflowExploring Dataflow
Architectures for ImprovedArchitectures for Improved
Efficiency in Earth SystemEfficiency in Earth System

ModelsModels

CONTINENTS is an international collaboration project between EPCC, NCAR, and NCAS.
We are aiming to improve the computational and energy efficiency of large scale
computing environments and improve atmospheric simulations through directed
research.
UKRI project EP/Z531170/1

2 / 29

AcknowledgementsAcknowledgements

Dataflow model

Cerebras Wafer Scale Engine

hardware
applications
programming

Modelling SWE on WSE

3 / 29

OutlineOutline

"Dataflow machines are programmable
computers of which the hardware is
optimized for fine-grain data-driven
parallel computation."1
Characterised by spatial parallelism

tens of thousands of processors
fast on-chip network between
processors

Generally lacks large centralised
memory
Usually power efficient

1. https://dl.acm.org/doi/10.1145/27633.28055

4 / 29

Dataflow modelDataflow modelDataflow modelDataflow model

https://dl.acm.org/doi/10.1145/27633.28055

Google TPU
Configurable Corse Grain Array - Xilinx’s
ACAP
AMD AI engine
Cerebras Wafer Scale Engine

5 / 29

Hardware examplesHardware examplesHardware examplesHardware examples

6 / 29

Cerebras Wafer Scale EngineCerebras Wafer Scale EngineCerebras Wafer Scale EngineCerebras Wafer Scale Engine

Made by Cerebras
Built upon a 5nm process technology
The current generation WSE-3 specs:

900,000 independent cores
44GB on-chip SRAM memory
21PB/s aggregate memory
bandwidth
214 Pb/s processor to processor
fabric bandwidth

The flexibility of the independent cores
and the large amount of memory
means that, the WSE-3 is capable of
delivering the performance of many
GPUs

7 / 29

Wafer Scale Engine (WSE)Wafer Scale Engine (WSE)Wafer Scale Engine (WSE)Wafer Scale Engine (WSE)

Current generation is CS-3
Custom cooling and power delivery for
the WSE

draws around 23kW of power
Uses standards-based power and
network connections

12x standard 100 Gigabit Ethernet
links

Multiple can be clustered together

8 / 29

CSXCSXCSXCSX

The Cores / Processing Elements (PEs)
run independent of each other

e.g. have their own program
counters

PEs are connected by a 2D rectangular
mesh across the chip

32-bit messages (called wavelets)
can be communicated with
neighbours in a single cycle

The 44GB of WSE memory is distributed
amongst the PEs

Each PE has its own private chunk
of memory
Access time on the order of cycles

9 / 29

WSE detailsWSE detailsWSE detailsWSE details

The processor itself

Commonly referred to as the
Compute Engine (CE)
Independent and private from any
other

A router

Connected with bidirectional links
to own CE and router of four
neighbours
Link to own CE is called the RAMP
and neighbours are referred to by
north, south, east and west
This is the only way in which PEs
can communicate

Local (private) memory

All data and code for the PE is
stored in this memory
48KB per PE 10 / 29

WSE PE detailsWSE PE detailsWSE PE detailsWSE PE details

11 / 29

What are suitable applications?What are suitable applications?What are suitable applications?What are suitable applications?

“Wafer-Scale Fast Fourier Transforms”
fastest time for a usefully sized benchmark

“Massively scalable stencil algorithm”
turns a memory bound problem into a compute bound problem

“Massively Distributed Finite-Volume Flux Computation”
two orders of magnitude speedup over GPU

“Scaling the “Memory Wall” for Multi-Dimensional Seismic Processing with Algebraic
Compression on Cerebras CS-2 Systems”

Gordon Bell finalist on 48 CS-2 systems, 93 PB/s sustained memory bandwidth
“Breaking the Molecular Dynamics Timescale Barrier Using a Wafer-Scale System”

457-fold improvement in timesteps per second versus the Frontier GPU-based
Exascale platform

12 / 29

Success storiesSuccess storiesSuccess storiesSuccess stories

For machine learning - PyTorch
The original and primary workload

For everything else - Cerebras Software Language (CSL)
Based on the Zig language
High quality simulator is available

Host CPU(s): PythonHost CPU(s): PythonHost CPU(s): PythonHost CPU(s): Python
Loads program onto CSX system
Streams in/out data from/to device
Launches device functions

Device: CSLDevice: CSLDevice: CSLDevice: CSL
CSL programs run on groups of cores on
the WSE, specified by programmer
Executes dataflow programs

13 / 29

Programming the WSEProgramming the WSEProgramming the WSEProgramming the WSE

CSL program consists of tasks and functions
Functions can be called by the host or another function on the device
Tasks are started by the hardware, run until completion, and then at that point the
hardware chooses another task to run

Can only be activated, can not be called by other tasks or functions
No return value

14 / 29

Programming the WSE -Programming the WSE -Programming the WSE -Programming the WSE -
execution unitsexecution unitsexecution unitsexecution units

A wavelet is a 32-bit message communicated with a neighbour in a single cycle

Each physical channel has 24 virtual communication channels known as colors that can
be used for passing wavelets

Each wavelet has associated with it a 5-bit identifier which defines which channel it is
communicated on

Determines the wavelet’s routing through the fabric and its consumption
This is a bit like a tag in MPI point-to-point communications, and similarly many
messages on one color does not block messages with a different color using the
same physical link

Wavelets are consumed by tasks on a PE where a task is registered to execute when a
wavelet arrives with a specific color

Collectives and point-to-point communication libraries are available

15 / 29

Programming the WSE -Programming the WSE -Programming the WSE -Programming the WSE -
communicationcommunicationcommunicationcommunication

//modules
const v1 = @import_module("m1.csl");
v1.incr();

//basic syntax
fn factorial(x : i32) i32 {
 if (x <= 2) return x;
 return x * factorial(x-1);
}

//builtins
var matrix = @zeros([4,5]f16);

//tasks
task recvTask(data: u16) void {
 globalValue = data;
}

//compile time computation
//colours and routing
comptime {
 @bind_task(recvTask, recvColor);
 @set_local_color_config(recvColor,
 .{ .rx = .{ WEST }, .tx = .{ RAMP } });

16 / 29

CSL examplesCSL examplesCSL examplesCSL examples

Data Structure Descriptors (DSDs)Data Structure Descriptors (DSDs)Data Structure Descriptors (DSDs)Data Structure Descriptors (DSDs)

Provide a mechanism to consider an array, and an access pattern, as a complete unit
Operations using DSDs run for multiple cycles to complete an instruction on all data
referenced by the DSD
Performance and ease of use: lifts level of program to talking about whole structures,
while lowering cost of computing indexing into hardware

const dstDsd = @get_dsd(mem1d_dsd, .{.tensor_access = |i|{5} -> dst[i]});
const src0Dsd = @get_dsd(mem1d_dsd, .{.tensor_access = |i|{5} -> src0[i*3]});
const src1Dsd = @get_dsd(mem1d_dsd, .{.tensor_access = |i|{5} -> src1[i,i]});

DSDs are a unifying concept that provides for complex memory reads and writes and
fabric reads and writes

const fabDsd = @get_dsd(fabout_dsd, .{.fabric_color = output_color, .extent = 5});

task main_task() void {
 @faddh(dstDsd, src0Dsd, src1Dsd);
 @fmovh(fabDsd, dstDsd);
}

17 / 29

CSL performance featuresCSL performance featuresCSL performance featuresCSL performance features

Various available: collective communications, message passing, math, debug...

Memcpy library:Memcpy library:Memcpy library:Memcpy library:

Transfer data between the WSE and host
The host and WSE network interfaces finally route the data into your kernel

(last step is implemented on the WSE itself to connect the I/O channel entry-points,
which are in fixed locations at the edges of the WSE)

Uses an additional halo of PEs around the user kernel and multiple columns on either
side to route data

18 / 29

CSL librariesCSL librariesCSL librariesCSL libraries

19 / 29

Modelling SWE for WSEModelling SWE for WSEModelling SWE for WSEModelling SWE for WSE

The shallow water model is a simplified kernel representing the nonlinear PDE's governing
geophysical fluid flow
A mini-app with computations similar to the ones used in weather and climate modeling
Useful in testing the suitability of hardware or programming languages

20 / 29

Shallow Water EquationsShallow Water EquationsShallow Water EquationsShallow Water Equations

Stencils (involves self, left, right, diagonal)
Mesh point updates can happen independently

Halos (due to use of stencils and domain decomposition)
Boundary conditions (can be cyclic)
Operates on 2D arrays
Code sections:

Data initialisation
Time loop

Stencil updates
Periodic continuation
Stencil updates
Periodic continuation
Time smoothing

Result output and cleanup

21 / 29

Computational patternsComputational patternsComputational patternsComputational patterns

13 2D data arrays for u, v, p, etc.
Match 2D mesh structure by decomposing arrays evenly

Memory limitations:
52 bytes (using 32bit floats on WSE) of storage per mesh point
945 mesh points per PE (48 KB memory) MAX
WSE-2 has 757x996 PEs, so max problem size (round down to 30x30 elements on
each PE) is 22’710 x 29’880
Some space needed for initialisation data and program...

22 / 29

Data decompositionData decompositionData decompositionData decomposition

PEs need to communicate halos
Diagonal halo takes the longest, but should still take only ~2 cycles
Tiny, uniform latency should lead to perfect weak scaling

Long range communications due to periodic boundary conditions take up to ~996 cycles
Local computation can hide this latency
The critical path between long range communications does ~40 ops per mesh point
Would need 25 mesh points to cover worst case latency

Data wavelets can activate computation tasks

23 / 29

CommunicationsCommunicationsCommunicationsCommunications

Should be able to run at full 800MHz when pipeline is full, parallelised to the minimal
requirement to hide long range comms.
256x256 problem

Put 2x2 mesh points on each PE (hides up to 160 cycle long range comm)
Use 128x128 PEs
Compute rate is: 128*128*800MHz = 12.5 TFlop/s (at 32bit floats)

4096x4096 problem
Put 8x8 mesh points on each PE (hides up to 2560 cycle long range comm)
Use 512x512 PEs
Compute rate is: 512*512*800MHz = 200 TFlop/s (at 32bit floats)

24 / 29

Performance estimatesPerformance estimatesPerformance estimatesPerformance estimates

Larger problems need more data per PE to hide the long range comms.
This reduces compute parallelism for a fixed problem size.
Limited by memory on PEs.

Want to use minimum number of mesh points per PE to maximise parallelism.
But this increases the distance of long range comms.
Limited by number of PEs.

Parallelisation is key. The CSX has relatively slow cores, but many more of them.
Parallelising across multiple devices is the next challenge.

Similar considerations to the long-range comms problem.

25 / 29

TrendsTrendsTrendsTrends

"WaferLLM: A Wafer-Scale LLM Inference System" (https://arxiv.org/pdf/2502.04563)
"PLMR model captures the unique hardware properties of wafer-scale accelerators"

Massive PPPParallelism (P)
Highly non-uniform memory access LLLLatency (L)
Constrained local MMMMemory (M)
Constrained RRRRouting resources (R)

26 / 29

PLMR modelPLMR modelPLMR modelPLMR model

https://arxiv.org/pdf/2502.04563

CSX uses up to 23kW (the whole system)
About 9 GFLOP/W for the
4096x4096 problem.

Comparing to "Massively scalable
stencil algorithm"
(https://arxiv.org/pdf/2204.03775)

Reports 22 GFLOP/W for 3D stencil
on WSE
A100 GPU achieves about 5
GFLOP/W in the same study
Up to 228x speedup when using
WSE

Green500 HPL benchmarks, Nov 2024
1st place achieves 72 GFLOP/W
10th place achieves 62 GFLOP/W

27 / 29

Power efficiencyPower efficiencyPower efficiencyPower efficiency

https://arxiv.org/pdf/2204.03775

Implementation on CS-3
Generalisation of modelling and implementation strategy
Extension to Tenstorrent Blackhole
Evaluation of more complex models, such as CM1 and MPAS

28 / 29

Future workFuture workFuture workFuture work

The CSX is a powerful architecture with significant raw compute and distributed memory

We have explored the general way in which the WSE is organised and the key concepts
and terminology

Modelled the performance of shallow water equations on a dataflow architecture

An efficient implementation is possible
Likely to see performance and energy benefits

29 / 29

Summary, SWE on WSESummary, SWE on WSESummary, SWE on WSESummary, SWE on WSE

